Principali informazioni sull'insegnamento	
Titolo insegnamento	Probabilità applicata e Processi Stocastici
Corso di studio	LM in Statistica e Metodi per l'Economia e la Finanza (SMEF)
Crediti formativi	6
Denominazione inglese	Applied Probability and Stochastic Processes
Obbligo di frequenza	No
Lingua di erogazione	italiano

Docente responsabile	Nome Cognome	Indirizzo Mail
	Rosa Maria Mininni	rosamaria.mininni@uniba.it

Dettaglio credi formativi	Ambito disciplinare	SSD	Crediti
	Attività formativa e	MAT/06	6
	caratterizzante		

Modalità di erogazione	
Periodo di erogazione	I semestre
Anno di corso	primo
Modalità di erogazione	Lezioni frontali

Organizzazione della didattica	
Ore <mark>totali</mark>	42
Ore di corso	42
Ore di studio individuale	108

Calendario	
Inizio attività didattiche	Inserire da segreteria
Fine attività didattiche	

Syllabus	
Prerequisiti	Conoscenze di base del Calcolo delle Probabilità.
Risultati di apprendimento previsti	Conoscenza e capacità di comprensione
(declinare rispetto ai Descrittori di Dublino) (si raccomanda che siano coerenti con i risultati di apprendimento del CdS, riportati nei quadri A4a, A4b e A4c della SUA,	Approfondimento degli aspetti teorici strettamente connessi al Calcolo delle Probabilità e alla Teoria dei Processi Stocastici. illustrazione di alcuni modelli probabilistici generalmente usati per lo studio di fenomeni reali in differenti campi applicativi.
compreso i risultati di apprendimento trasversali)	 Conoscenza e capacità di comprensione applicate Capacità di applicare le conoscenze acquisite allo studio di problemi in tutte le scienze applicate, in particolare in Finanza.
	Autonomia di giudizio Essere in grado di comprendere e raccogliere le informazioni riguardanti i problemi in studio. Capacità di costruire nuovi modelli statistico-probabilistici per la

descrizione del problema e di interpretarne i risultati

• Abilità comunicative

Acquisizione del linguaggio matematico necessario per descrivere, interpretare e spiegare eventi e processi in differenti ambiti applicativi tramite l'utilizzo di modelli probabilistici.

Capacità di apprendere

Acquisizione di un metodo di analisi adeguato, supportato dalla risoluzione di problemi proposti durante il corso.

Contenuti di insegnamento

Programma

- Funzione di distribuzione di probabilità condizionata nel discreto e nel continuo. Valore atteso condizionato e varianza condizionata rispetto ad una variabile aleatoria. Esempi.
- Distribuzione esponenziale: definizione, valore atteso, varianza e funzione generatrice dei momenti. Proprietà della distribuzione esponenziale. Applicazioni della distribuzione esponenziale in finanza, in teoria delle code, nei processi industriali (funzione di sopravvivenza e tasso di guasto).
- Definizione di processo stocastico ed esempi. Processi stocastici nel discreto:
- 1) Processi di conteggio e proprietà;
- 2) il processo di Poisson e sue proprietà. Distribuzione dei tempi di interarrivo e dei tempi di attesa in un processo di Poisson. Distribuzione condizionata dei tempi di attesa in un processo di Poisson;
- 3) Catene di Markov a tempo discreto: probabilità di transizione e matrice di transizione. Esempi di applicazione. Equazioni di Chapman-Kolmogorov. Classificazione degli stati di una catena di Markov. Definizione di catena di Markov irriducibile, positiva e ricorrente. Definizione di catena di Markov ergodica. Probabilità limite o stazionarie. Esempi di applicazione: La passeggiata aleatoria, il problema della rovina di un giocatore. Calcolo del tempo medio trascorso in uno stato transiente.
- 4) Catene di Markov a tempo continuo: definizione e proprietà. Esempi di applicazione: processi nascita e morte, sistemi di coda. Definizione di funzione di probabilità di transizione e proprietà. Equazioni di Chapman-Kolmogorov, all'indietro e in avanti. Probabilità limite.
- 5) Modelli Binomiali in Finanza: introduzione ai contratti di opzione, arbitraggio, probabilità neutrali al rischio. Modello Binomiale ad uno stadio e multiperiodale per la valutazione di opzioni.
 - Processi stocastici nel continuo:
- I) Moto Browniano: definizione e cenni storici. Determinazione del moto Browniano come processo limite di una passeggiata aleatoria. Continuità e non derivabilità

	delle traiettorie di un moto Browniano. Tempo di primo passaggio. Moto Browniano con drift. Moto Browniano geometrico. Processi gaussiani. Moto Browniano integrato; 2) il processo Martingala: cenni storici e definizione. Definizione di submartingala e supermartingala. Trasformazione di submartingale in martingale: scomposizione di Doob- Meyer, trasformazione della misura di probabilità e Teorema di Girsanov. Applicazioni alla valutazione di opzioni. 3) il Modello di Black-Scholes-Merton per la valutazione delle opzioni europee: cenni storici, ipotesi di mercato, la formula di Black-Scholes. Esempi di applicazione. La strategia di Delta Hedging. 4) il Modello di Cox-Ingersoll-Ross (CIR) per studiare l'andamento di tassi di interesse a breve termine.
Testi di riferimento	
Note ai testi di riferimento	 Sheldon M. Ross, Introduction to Probability models (9th edition), Elsevier, USA, 2007. Lucidi e dispense distribuite a lezione e disponibili online nella pagina web del docente
Metodi didattici	Lezioni frontali
Metodi di valutazione (indicare almeno la tipologia scritto, orale, altro)	Esame orale
Criteri di valutazione (per ogni risultato di apprendimento atteso su indicato, descrivere cosa ci si aspetta lo studente conosca o sia in grado di fare e a quale livello al fine di dimostrare che un risultato di apprendimento è stato raggiunto e a quale livello)	Competenze, capacità ed abilità verranno valutate dal docente durante il corso tramite l'interazione con gli studenti e mediante una prova orale per la valutazione finale.
Altro	